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Abstract

In this study, we propose a new method to simulate human gait motion when the muscles are
deactivated. The method is based on the inverted pendulum model that is used for gait generation
in robotics. After the normal gait motion is generated by setting the initial posture and the value of
the parameters that determine the motion, the muscle to be deactivated is specified. By minimizing
an objective function based on the force exerted by the specified muscle during the motion, the
set of parameters that represent the pathological gait is calculated. The effects of weakening the
gluteus medialis muscles was analyzed. The data of the final motion was compared with data by
real patients and there were significant similarities among them. Since the number of parameters
to describe the motion is limited in our method, the optimization process converges much faster
than previous methods.

1 Introduction

Techniques to simulate human gait motion have been developed by researchers in areas such as
biomechnaics and robotics. The mehtods used in each area is based on different methods.

In biomechanics, computer simulations based on musculoskeletal models are often used to analyze
the role of specific muscles during motions. Many researchers have analyzed the contribution of some
specific muscles to performance by using optimization methods based on forward dynamics [19]. For
example, Pandy et al.[20] analyzed the role of biarticular muscles in maximal jumping, and they
concluded that biarticular muscles contribute to jumping performance by redistributing segmental
energy within the musculoskeletal system but without generating energy by themselves (a conclusion
that is consistent with that made by Rocobs et al. [8]). Neptune et al. [18] analyzed the role of the
plantarflexor muscles during gait, and they calculated the degree to which these muscles contribute to
propelling the trunk in the forward direction (induced acceleration [24]). Piazza et al.[22] examined
the contribution of muscle forces to knee flexion during the swing phase of normal gait. However, the
effects of muscle deactivation, i.e., how the motion would change when the force development capacity
of a muscle has been impaired, were not examined in these studies.

Human gait motion have also been simulated by combining forward dynamics and optimization
[25, 1, 18, 5]. Studies have been carried out to identify the input signals to muscles that enable human
gait motion in a forward dynamics environment, the objective of these studies being to obtain an
accurate pattern of muscle activation during gait motion.

Although these researches have succeeded in simulating realistic normal gait, there are several
shortcomings with these methods that make it difficult to apply them to analyize the effects of deac-
tivation of individual muscles, which would involve various cases according to the patients.

First of all, the researcher must provide a good initial guess of the activation data in the beginning
to avoid the optimization process to get stuck into some local minima. In most of the cases, this is
done through trial-and-error by the researcher. This is quite time consuming, and the researcher needs
special experience to determine the good set of muscle activations to generate realistic gait motion.
Next, since all the time sequence data for the muscles must be determined through the optimization,
the computational cost for these methods are enormous. Third, although balance-keeping is one of



the most important factor for gait motion, there was no explicit way to describe the balanced motion
in these researches. As a result, the optimizer always had to suffer from keeping the balance while
searching for the right set of parameters that generates a realistic human gait motion.

In robotics, biped locomotion of humanoid robots is one of the most exciting topics these days.
Many researchers have developed humanoid robots that are capable of performing biped gait motion
[10, 7, 4, 9]. A major way is to design gait motion based on Inverted Pendulum Model (IPM) [10, 9].
The IPM approach is a top down approach, comparing to the bottom approach used in biomechanics,
as the abstract motion is determined first, and the details of the motion such as the kinematic data
are calculated in the bottom stage. The advantage of the top down approach is that the controller
does not have to suffer from detemining low level control signals such as the torque exerted at the
joints or the muscle activation data in the beginning. It is possible to simplify complex models of
humanoid robots that have too many degrees of freedom to be controlled directly. In addition to that,
as the motion of the COG is explicitly controlled, the balance of the humanoid robot is assured in the
feedforward stage. Therefore, when using optimization methods to plan motions, it is not necessary
to suffer from keeping the balance.

However, no angular momentum have been generated by the IPM since it assumes that the center
of gravity (COG) is a mass point and that the ground force vector always passes through the COG of
the system. It is therefore difficult to generate various patterns of gait motion, particularly human-like
gait motion, using this model.

In this study, we propose a new top-down approach to calculate pathological gait by combining the
IPM method with the musculoskeletal model. The effects of deactivating the gluteus medialis muscles
were examined and compared with real human motion data done by patients with similar disabilities.

The trajectory of the COG is first calculated by using the Enhanced Inverted Pendulum Model
[11, 14] that extends the IPM by allowing angular momentum to be generated around the center of
mass. Next, the kinematics of the motion is determined using inverse kinematics. As the muscles of
the body that is to be deactivated is determined, an objective function based on the time series data
of the force exerted by this muscle is formed. By minimizing this criteria by searching an optimal set
of EIPM parameters that define the gait motion, the pathological gait motion is calculated.

The method proposed in this study has the following advantages comparing to previous methods:

e Since the gait motion is described by the EIPM parameters, there is no need to specify all the
input parameters to the muscles. As a result, the computational cost for the optimization is
much less than previous methods.

e As the balance of the human body model is explicitly kept by using the EIPM model, the
optimizer only needs to search the optimal set of parameters in terms of muscle force, and
therefore does not need to go through a large number of trials to generate the balanced motion.

2 Musculoskeltal Model

To simulate the motion by pathological patients, it is necessary to prepare a physiological model of
the human body. The musculoskeletal model developed by Delp [3] was used in this study. This data
includes the attachment sites of 43 muscles on each leg and physiological parameters such as the length
of tendons, muscular filaments, and etc. Muscles are attached only to the legs, and no muscles are
put on the upper half of the body. The human body model used in this study is shown in Figure 1.

The upper half of the body is composed of the chest, head, upper arms, lower arms, and hands.
However, only the chest (3 DOF) and the upper arms (3 DOF each) are allowed to move among these
segments. The lower half of the body is composed of the pelvis, and the femur, tibia, patella, talus,
calcaneous, and toes in each leg. The joints of the legs are assumed as either a 3-DOF gimbal joint
(hip joint) or as a 1-DOF joint (knee, ankle, calcaneous, and metatarsal joint). Therefore, the total
degrees of freedom of the body, including the 6DOF of the pelvis in the global coordinate system, is
29.



Figure 1: The frontal (left) and backward (right) views of the human body model

Each musculotendon is based on the musculotendon model of Hill [6], and parameter values were
derived according to Delp [3]. The musculotendon model is composed of three elements: a contractile
element (CE, representing all the muscle fibers), a parallel elastic element (PEE, representing all
connective tissues around the muscles fibers), and a series elastic element (SEE, representing all series
elasticity, including tendons). At each time step, the musculotendon length was determined from the
posture (i.e., as a function of joint angles). Thereafter, the range of force developed by a muscle can
be calculated at each time step:

Fp < (1) < Fie? (1)

where F,(t) is the musculotendon force of the mth muscle, F/" and F™% are the minimum and
maximum force developed by this muscle, which are determined by their force-length-velocity proper-
ties:

Fg}m = f(Fr(r)ulmyvmaO)
Frrrrzmz = f(Fr(r)wlmavmal)

where function f(F°, Iy, Um,am) is the force-length-velocity surface assumed in the musculoskeletal
model [27], I"™ is the length and v™ is the velocity of the shortening muscle m, and the 0 and 1 in
these equations are a,,, the activation level of the muscle that determines the amount of force exerted
by the contractile element (0 < a,, < 1).

3 Enhanced Inverted Pendulum Model

As explained in the Introduction, the IPM is an algorithm used in robotics to plan the balanced gait
motion by humanoid robots. The enhanced version of the IPM is used in this study to plan the
trajectory of the COG that resembles humans.

Let us define the position of the COG by (z, H) and the position of the ZMP by (zmp,0). In the
IPM, the ground force vector (Fy, F,) had to be parallel to the vector connecting the COG and the
ZMP, which is to satisfy the following law:

Fp:Fy=2:24+g=o:H.



This relationship is depicted in Figure 2(a). Although this is a quite simple and convinient model
to explain the motion of the COG, the motion that could be generated was limited as no angular
momentum around the COG was allowed to be made.

The enhanced version of the IPM include the following two extensions: (1) the ZMP is allowed
to move over the ground, and (2) the ground force vector does not have to be parallel to the vector
between the ZMP and the COG, as long as its horizontal element is linearly dependent on the COG
position. As a result, rotational moment can be generated by the ground force. The relationship
between the COG and the ground force with the IPM and the EIPM are depicted in Figure 2(a) and
(b), respectively. Let us define here the direction of the ground force vector by (cz + d, H). The
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Figure 2: The standard IPM (a) and enhanced IPM (b). The IPM restricted the ground force to
pass through COG while the EIPM allows the horizontal component, of the ground force have linear
relationship with the position of the COG.

relationship between acceleration of the motion of the COG and its position then becomes
F,:Fy=%:24+g=cx+d: H.
Since the height of the COG is z = H, we can write

o'é:%(cx—kd). (2)

The solution for this differential equation can be written as
ot +t d
x=Cre Te + CheTe — —, (3)
c
where T, = /H/(cg), and C and C3 are constant values. Since initial parameter values are set at
x =x9 and £ = vy at t = 0, the constant values C1 and Cy are

d d
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The ground force vector can then be written as

m
T.2
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F, = mi= (C1€_T_e + C2€T_€) ;
F, = mg
where m is the mass of the system. The rotational moment r around the y-axis can be calculated as

mH
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and angular momentum wy, ¢, generated by the rotational momentum between time ¢ = ¢1,%2 can be
obtained as
_ta 12 _u 1 H
Wity = m(—Cre” Te + CreTe + Cre Te — C2€Te)(*f —gTe) (5)

e

d t2
— mg(z)(tg —t1) —l—mg/ zmpgdt + wi,
t1
where wy is the angular momentum at ¢ = ¢;. Using the EIPM, it is possible to define the motion of
the COG and angular momentum in the sagittal plane and the frontal plane independently. Therefore,
in this study, the motion of the COG in these planes are decribed by different EIPM equations.

4 Modeling Human Gait by the EIPM

Since EIPM only allows linear relationship between the COG and the ground force vector, the gait
motion must be divided into several phases to be represented by the EIPM. As the motion of the gait
is assumed symmetric, the half cycle of the gait motion in the sagittal plane can be divided into four
stages, by the postures known as other toe off (OTO), heel rise (HR), opposite initial contact (OIC),
middle stance (MS), and toe off (TO), as shown in Figure 3. The half cycle of the motion in the frontal

.....

Figure 3: The half cycle of the gait is divided into four phases, each motion represented by EIPM.

plane can be represented by two consecutive EIPM models, one representing the single support phase,
and the other representing the double support phase. The parameters to explain these EIPMs can
be calculated from the boundary conditions and kinematic parameters of the motion. The following
parameters are used to define the gait motion in this research:

e the position of COG at postures known as other toe off (OTO), heel rise (HR), and other initial
contact (OIC) and its velocity at OTO in the sagital plane

e and the lateral distance between the left and right foot and the parameter that determines the
angular momentum in the frontal plane.

Further explanation of these parameters can be found in Appendix A1l and A2. Let us represent these
variables by vector p here.

After the trajectory of the COG and the angular momentum is determined by the EIPM, then the
motion of body segments that satisfies those trajectories are calculated using inverse kinematics. It is
known that methodologies of inverse kinematics combined with concepts of COG [16] and dynamics [26]
give fairly realistic motions. Natural behavior such as swinging of arms and thorax can be obtained
using this methodology. This process is also explained in [11] and Appendix A3. By using inverse
kinematics, the values, velocities, and accelerations of the generalized coordinates can be calculated.
Then, the torque developed at each joint was calculated from these kinematic data by using inverse
dynamics [23]. During double support phase, to solve the redundancy problem caused by the closed-
loop formed by the ground and the feet, the ground force vector was divided into two and applied to



each foot in a manner the total amount of torque exerted by the joints is minimized [17]. In summary,
by specifying the variable parameters p for the EIPM, the motion of the human body model was
calculated. As the kinematic data and external force data from the ground are available, the torques
exerted by the joints could be calculated.

5 Calculating pathological gait

Torque 7;(t) developed at joint j is theoretically generated as follows by the muscles crossing the joint:
Ti(t) = ) Fn(t)rmy.d =0, ... ngog (6)
m

where 7, ; is the moment arm of muscle m about the jth joint axis, and ng,r is the number of

degrees of freedom whose torque are assumed here to be generated by the muscles. They include the

flexion /extension, adduction/abduction, and rotation at the hip, flexion/extension at the knee, and

plantarflexion /dorsiflexion at the ankle, and therefore, by taking into account both legs, ng,r = 10.
The muscle forces at each time step can be calculated by minimizing the muscle stress [2]:

7= 3 gy g

m

where n,, is the total number of muscles (n,, = 43x 2 = 86), and F is the maximal force parameter of
muscle m, that is calculated by the physiological cross-sectional area of the muscle. J was minimized
using quadratic programming [15], which is an optimization method that can minimize a quadratic
form while satisfying linear equality and inequality constraints. In summary, the muscle forces can
be calculated by minimizing Equation (7) while using Equations (6) and Equation (1) as constraints.
This method is known as the static optimization method to estimate muscle force in biomechanics
[1, 28].

To describe the process to calculate the pathological gait, let us define a new function here that
summarize all the processes explained previously, including the EIPM, inverse kinematics, inverse
dynamics and static optimization:

Frp = fr(0,t)(m = 0, ooy — 1) ®)

where p is the vector defined in section 4 that include the parameters to define the gait motin by the
EIPM, and F;, is the force by muscle m calculated by minimizing Equation 7. To simulate the effect
of weakening muscle m, the following criteria is minimized until it is smaller than the threshold value:

T
I = /O frm(p,t)dt + a(p, 1) (9)

where T is one cycle of the gait motion, and «(p,t) is a penalty function that is based on the external
torque that has to be applied to the body to assist the musculoskeletal model accomplish the motion
when there is no solution found for the static optimization problem at time ¢ [13, 12]. The penalty
function helps to avoid the motion to be converged to one that is not feasible by the musculoskeletal
model. This optimization is done using sequential quadratic programming [15].

6 Experimental Data Analysis

First of all, the normal gait motion was generated by setting the appropriate EIPM parameters p.
Next, by minimizing an objective function based on the gluteus medialis that has the form of Equation
(9), the effects weakening the gluteus medialis during gait was simulated.

As the optimization proceeds, features known as lateral trunk bending appears in the motion. The
trunk swings from one side to the other, producing a gait pattern known as waddling. During the



double support phase, the trunk is generally upright, but as soon as the single support phase begins,
the trunk leans over the support leg, returning to the upright attitude again at the beginning of the
next double support phase.

The trajectory of the gait motion before and after the optimization is shown in Figure 4 (a) and

(b) as well.

Figure 4: The trajectory of the EIPM-generated motion before (a) and after (b) the optimization..

The trajectory of the angular momentum of the body around the anterior axis before and after the
optimization is shown in Figure 5 (a). Because of the waddling, a large amount of angular momentum
is generated by the gait motion by the weakened gluteus medialis. The results are compared with the
data by real human, that by a healthy subject and that by a patient who has congenital dislocation
in Figure 5 (b). The time-series data of the muscle force calculated from the motion using the static
optimization method is shown in Figure 6. The real human muscle force data estimated by the
EMG pattern of muscles during normal gait from [21] are listed together. This estimation was done
by multiplying the maximum force parameter FY by the activation data listed in [21], which were
calculated by manual muscle tests.

7 Discussions

As we compare the muscle force calculated from the motion by the EIPM with the muscle force
calculated based on the EMG data, the overall features of the time-series data are quite similar,
although there are some differences such as the timing of the on-set and off-set of the muscle force,
and the activation pattern of muscles such as the rectus femoris. The former gap can be due to the
difference of the motion while the latter is a problem that often results from using static optimization
to estimate force exerted by biarticular muscles. Similar phenomena are observed in researches such
as [2, 1]. To overcome this problem, a new method to estimate muscle force by taking into account
the special role of the biarticular muscles such as transferring energy from one segment to another
must be proposed. This is, however, out of scope of this research. From these results we can conclude
that the motion based on the EIPM is not only dynamically feasible, but also physiologically feasible.

In our experment, by minimizing the amount of force exerted by the gluteus medialis during the
gait motion, the waddling gait motion was automatically induced. This is a quite natural phenomena,
as it is known weak abductor muscles causes waddling. Waddling is a well-known abnormality of gait
motion which is caused not only by weak abductor muscles, but also by congenital dislocation of hip
joints and pain in the joints. Waddling reduces the torque and the bone-on-bone contact force at the
hip of the support leg during the single support phase. As shown in Figure 6(e), the muscle force
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Figure 5: The comparison of the angular momentum around the anterior axis during the gait motion.
(a) The data calculated by the motion created by the EIPM, before (dark line) and after (dashed line)
the optimation process. The amplitude of the angular momentum increases as the force exerted by
the GMED decreases. These results match with the data calculated using real human motion, which
is shown in (b). In (b), the same data by a healthy subject (dark line) and a patient with waddling
gait (dashed line) caused by congenital dislocation are shown.

by the gluteus medialis is greatly reduced after the optimization process. The muscle force history of
real human performing normal gait and waddling gait calculated using static optimization are shown
in Figure 7. The waddling gait was performed by a patient with congenital dislocation on both hip
joints. The force exerted by the patient who has congenital dislocation is much less than that by the
the healthy subject. In this sense, the results obtained through our experiment shows great similarities
with the real human data.

As we compare the angular momentum around the frontal axis by the motion calculated using our
method and by the real human data, the curves of the trajectories by normal motion and by abnormal
motion both show has similarities (Figure 5).

The method used in this research to calculate human gait motion is based only on a limited number
of parameters that define the motion of the EIPM. Comparing to dynamic optimization methods that
have recently been used in biomechanics to simulate human gait and estimate muscle force, the method
proposed in this study has the following advantages:

1. since the number of the parameters is small, the optimization converges much faster than dy-
namic optimization methods,

2. since the balance of the motion is assured by the algorithm of the motion generation, the opti-
mizer does not have to suffer from keeping the balance through the gait cycle,

3. it is not necessary to search manually the initial guess of the muscle-activation parameters that
decide the motion, as the parameters that define the gait based on the EIPM are intuitive
kinematic parameters such as the position and velocity of the COG.

By taking into account these advantages and also the validity of the results in this study, it is possible
to conclude that our method can be used as a new approach to analyze and simulate human gait under
various condtions.
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Figure 6: Muscle force characteristics of the support leg during gait () and the corresponding
EMG data (%) from [21] . The figures show the characteristics of (a) adductor longus (ADDLONG)
(b) gastrocnemius (GAS), (c) soleus (SOL), (d) vastus (VAS), (e) gluteus medialis (GMED), (f)
hamstrings (HAM), (g) gluteus maximus (GMAXY) and (h) rectus femoris (RF).
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Figure 7: The GMED force calculated by static optimization method using real human motion by a
healthy subject (H) and by a patient with congenital dislocation (4).

8 Summary and Future Work

In this study, we have proposed a new method to simulate the gait motion when muscles are deacti-
vated. The method is based on the EIPM which is an enhanced model of the IPM that is often used
in robotics to generate gait motion. Comparing to previous methods, the method proposed here is
quite simple, and the computation cost is much less. For further research, we are planning to fit the
EIPM model into real human motion data, and simulate the effects of physiological disabilities and
also the process of pathology for rehabilitation use.
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Appendix

A1l: Application of the enhanced IPM for calculation of motion in the sagittal plane

Since EIPM only allows linear realtionship between the COG and the ground force vector, the gait
motion must be divided into several phases to be represented by the EIPM. By substituting the
position and acceleration data at the boundary postures into Equation 2, the coefficients of the EIPM
can be calculated for each stage. For example, as the motion of the COG is defined for the ith stage
is defined by g

i = L (e +di). (10)

where ¢; and d; are the EIPM coefficients that define the motion of the COG at this stage, they can
be calculated by substituting the position and acceleration data of the COG at the beginning and end
of this stage:

o = H@Ein—&) (11)
g(fEiH - xi)
d: H(Exip1 + Zip124) (12)
9(zip1 — ;)

where z; and #; are the position and acceleration of the COG in the beginning of stage ¢. The position
of the ZMP has a linear relationship with the position of the COG:

zmpy = a;x + b; (13)

where a; and b; are constant coefficients that determine the motion of the ZMP in each stage. In the
sagittal plane, the position of the ZMP at OTO, HR, OIC, and TO are set under the heel, metatarsals,
and tiptoe, respectively. The position of the ZMP at MS is determined in a manner that the angular
momentum around the COG at the beginning and end of half cycle are the same. The coefficients
a;, b; can be calculated using these boundary condtions:

MPi4+1 — ZMNP;

a; =
Ti+l — T4
b — Ti+12MP; — TiZMPi+1
-
Ti+l — Ti

where zmp; is the position of the zmp on the beginning of stage i. Among the variables described
above, the following parameters are used for the optimization:

e the position of COG at OTO, HR, OIC, and
e the velocity at OTO.

The position of the COG at MS is determined in a manner to compensate the angular momentum
generated during the single support phase. Therefore, the number of parameters for the EIPM in the
sagital plane is 4.
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Figure 8: Coordinate systems used in the frontal plane for (a) the single support phase and (b) the
double support phase. The origin is set to the position of the ZMP in the single support phase and
to the center in the double support phase.
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A2: Application of the enhanced IPM for calculation of motion in the frontal plane

The coordinate systems used here are shown in Figure 8. The distance between the feet when they
are both on the ground is 2s + 23. The COG moves 20 during the double support phase. After
switching to the single support phase, it moves along until it stops and returns back the same path.
The relationships between the ZMP, COG and ground force during the single support phase are

Ug: 2y +9=cyyy: H, (14)

where ¢, is a constant value that is correlated with ground force direction and position of the COG
(Figure 8(b)). Using the terminal condition, the motion of the COG can be finally written as:

t t
= scosh — — v, sinh —, 15
v T, U 1)
where v, is the velocity when the single support starts, and Tj; = /H/(cyg). Since the duration of
the single support phase 7' is determined by the motion in the sagittal plane (T" = to —t), ve, can be
calculated by setting ¢t = T,y, = s in Equation 15. As a result, v, can be calculated as

—5 + scosh %
Vex = X T 2
sinh #-

1is

The y-component of the ground force can be written as

m t t
F, = —|wyocosh — — v, sinh —) ,
F, = —mg.

Since the trajectories of the ground force, COG, and ZMP are known, rotational moment around the
anterior axis can be calculated as

re = ygF, — HF,.

The double support phase can be modeled as follows. Since the motion in the frontal plane is
symmetric with respect to time, it can be considered that the ZMP and COG satisfy the following
relationship:

B

Zy = myg
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Since rotational momentum is generated in the frontal plane and since rotational momentum decreases
as the COG approaches the origin of the coordinate system, motion of the COG can be approximated
by the following function:

Yg 39263(.@9_21/) 1 H, (16)

where c3 is a constant. Using the boundary conditions of the single support phase, c3 can be calculated
as

B+ (1 — Gcogy)s
B

c3 = < 0.

The trajectory of y, then becomes

_—_ t—ty b
C -
7, s T

Cc

yg = C1 cos

where C'1 and (5 are arbitrary constant values. Using the terminal conditions, the final form becomes

t—t t—1t
2+vexsin 2
(& (&

Yy = (B + s) cos

The y and z components of the ground force can be written as

m t— 12 .t —1e
F, = 72 ((ﬁ + $) cos 2 + Veg SIN Tc> ,
F, = —mg.

Rotational moment around the anterior axis can be calculated by using Equation 16. As same as in
the sagittal plane, because of the symmetry of the motion with respect to time, we do not have to
tune any parameters to compensate for the angular momentum. The variables used for optimization
in the frontal plane are only ¢, and s.

A3: Calculating the joint angles using inverse kinematics

As we have already defined trajectories of the COG and angular momentum, the next step is to
calculate kinematic parameters that satisfy these trajectories. Invese kinematics is used for this
purpose. At first, positions and rotational trajectories of the feet, which are defined here as (p;, 6;)
and (pr,0,), are calculated using footstep data specified in advance. As shown in Figure 9, four
keyframes of the support foot are specified. The data include posture of the foot at initial contact,
initial full contact, heel rise, and toe-off. The x- component of the velocity of the motion of the foot

initi initi heel
toe off initial initial :
contact full contact Y1S€

Figure 9: Keyframes of the foot rotation

of the swing leg when it is lifted from the ground is calculated by

1}0 . = Z—S
swing Tswing

14



The final velocity of the motion of the foot when it comes into contact with on the ground is set to
zero. The trajectory of the swung foot is calculated by intepolating the keyframes with a cubic spline
curve.

Trajectories of generalized coordinates of the human body model are defined here as q(t) =
(q1(t),q2(t), ..., qdof (t)), where dof is the number of degrees of freedom of the human body model,
which is actually twenty nine as explained in Section 2.

The relationship between velocity of the motion of the COG and velocity of the motion of the
generalized coordinates can be written as follows:

w.g = cog(ja
where J,,4 is the Jacobian matrix that consists of the partial differentials of the COG by the generalized

coordinates:

Ox
Jeog = 2.

Acceleration of the motion of the COG can then be obtained as follows:
By = Jeogd + Jeogd- (17)

Angular momentum r and the first derivative of the generalized coordinates have a linear correla-
tion:

r = Rgq.
The derivative of the angular momentum can then be calculated as follows:
7 = R + Rq. (18)

Acceleration of the motions of the feet can be expressed as functions of §

Dl

Bro| _ Jid+ s 19

g, | =Jri+Jrd (19)

O,

By combining Equations 17, 18 and 19, linear constraints that must be satisfied can be written in
the following form:

A = Jaud + Jaud, (20)

where A = (&g, 7, D1, 01, Pr ér)T, and Jau = (Jeogs By J¢)T. Calculating § that satisfies Equation
22 can be considered as an inverse kinematics problem.

Since this is a problem to calculate a stable gait motion, ¢ that minimizes the following quadratic
form is calculated as

(4 — k(4 — do) + d§) (4 — k(G — do) + dg)T, (21)

where § is the subset of ¢ that determines upright posture of the body. Those parameters include
rotation of the pelvis and joint angles of the chest. do is the target posture to keep the body upright,
which is a zero vector here, k is the vector of elastic constants, and d is the vector of viscosity constants.
¢ that minimizes Equation 21 and satisfies Equation 22 was calculated by quadratic programming,.

The initial posture at OTO that satisfies the COG and feet position constraints is first calculated
by adjusting the position of the pelvis. The velocity at the initial posture is calculated by solving for
the initial generalized velocity ¢y that satisfies the constraints of the COG, angular momentum, and
feet:

Ao = JY,40 (22)

a

where \g is the initial velocity vector and ngl is the initial Jacobian matrix for the whole system.
Using the calculated acceleration, the values of the generalized coordinates and their velocites were
updated step by step, and, finally, the entire trajectories were obtained.

15



