Automatic Extraction of the Interest Organization from Full-color Continuous Images for a Biological Sample

一生体フルカラー連続断面画像からの関心組織領域自動抽出法 ー

S. Takemoto ¹⁾²⁾, H. Yokota ¹⁾, H. Shimai ¹⁾²⁾ Makinouchi ¹⁾, T. Mishima ¹⁾²⁾

¹⁾ Saitama University ²⁾ RIKEN

Background

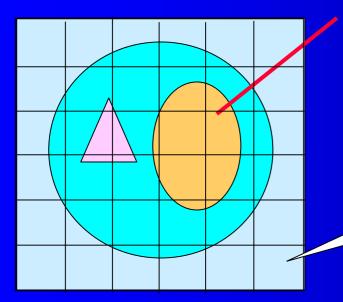
Constructing 3-D model of biological tissue in PC

Conventional research Gray-scale 3-D model by CT or MRI images

Desire for more detailed observation with color information

Need for color images of internal tissue picturized in detail

Getting Color Volume Data


Color image of biological internal tissue · Visible Human Project by U.S. National Library of Medicine · Development of New Observation System : 3D-ISM

Outlook of 3D-ISM

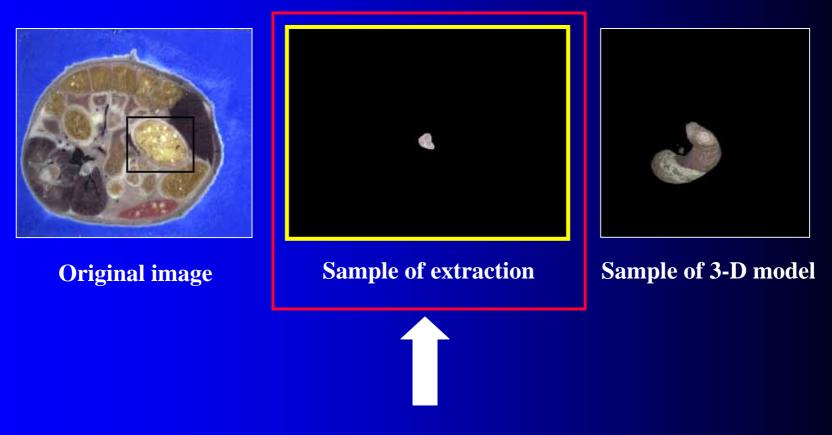
Essential Factor for Constructing 3-D Model

Extracting each tissue from all continuous images

ROI (Region of Interest)

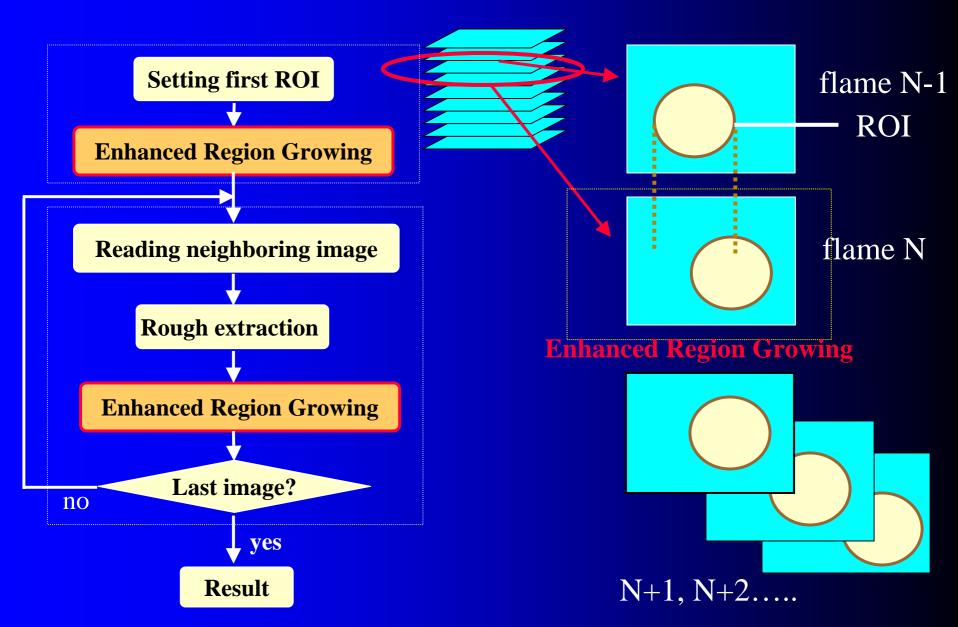
How to extract ?

Manual extraction (by anatomical knowledge)
Applying threshold to pixel value


$$\mathbf{P}x = (\mathbf{R}, \mathbf{G}, \mathbf{B})$$

Biological color image by 3D-ISM

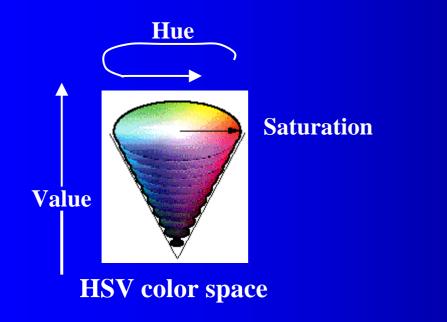
But!! •Huge numbers of images•No definite difference between tissues

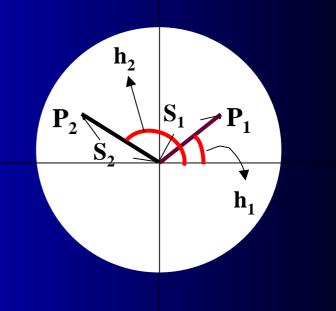

Need for a new extraction method suited to biological color image

Purpose of this Research Extracting ROI from all continuous images

Development of new segmentation technique suited for biological color continuous images

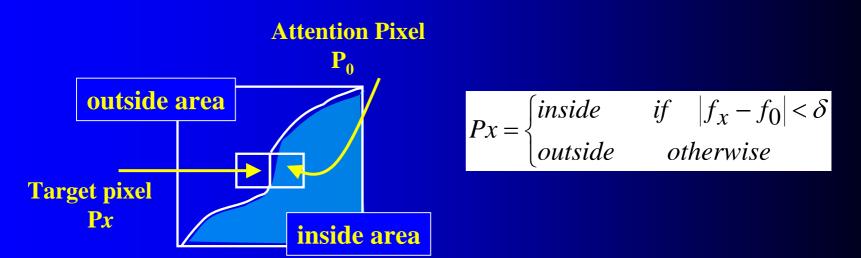
Outline of Extraction


Defining Region by Pixel Color Information Need for detecting slight change of pixel color value · Color change in the vicinity of boundary · Color similarity in the same tissue


Ingenious point 1

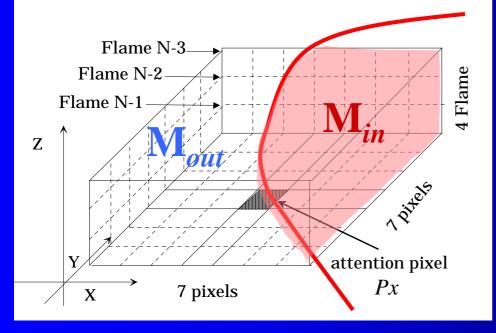
Convert pixel value from RGB to HSV

Ingenious point 2


Computing difference value between neighboring pixels on polar coordinate

Conventional Method (Region Growing)

(1) Defining rough area by arbitrary threshold
 (2) Detecting true boundary by another arbitrary threshold



Fatal Problem !!

Biological internal color image Complex in color distribution Difficult to extract ROI by arbitrary threshold

Proposed Method (Enhanced Region Growing)

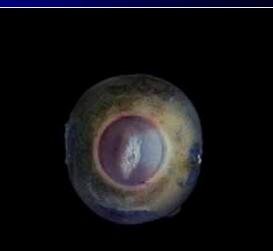
Evaluation of region : 2-D 3-D Threshold median value of an each local area

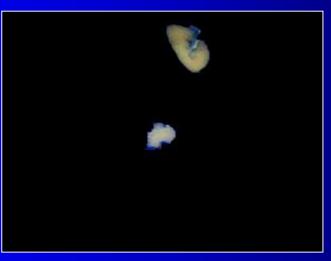
median value of outside local area : M_{out} median value of inside local area : M_{in}

The pixel value of Px is compared with the similarity of M_{out} and M_{in} .

Experiments

- Extraction of human eyeball
- 2 Extraction of stomach region from mouse
- 3 Extraction of lens from human eyeball


Experimental Result 1


• ROI : whole eyeball

Original image

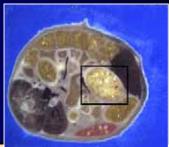
Original image : human eyeball 320 × 240 (pixel / slice) 840 slices (212 µ m / pix) Z-axis resolution : 10 µ m

3-D model

Extraction result from continuous 840 images

Experimental Result 2

• ROI : stomach


Original image : mouse 320 × 240 (pixel / slice) 150 slices (212 µ m / pix) Z-axis resolution : 30 µ m

Original image and extraction result from continuous 150 images

Correct Answer Rate (Experiment 2)

Flame	inside area			outside area		
<i>N.o.</i>	Result/Ans.	E	Rate %	Result/Ans.	E	Rate %
lst	1451/1493	42	97.19	75263/75307	44	99.94
5th	1606/1672	66	96.05	75101/75128	27	99.96
10th	1663/1726	63	96.35	75015/75074	52	99.92
30th	1975/2093	118	94.36	74628/74707	79	99.89
50th	2254/2329	75	96.78	74372/74471	99	99.87
100th	3397/3586	189	94.73	73029/73214	185	99.75
130th	3871/4083	212	94.81	72289/72717	428	99.41
140th	3561/3789	228	93.98	71942/73011	1069	98.54
150th	3372/4347	975	77.57	71828/72453	625	99.14

Experimental Result 3

• ROI : lens of human eyeball

Original image

3-D model

Original image :

human eyeball

120 slices (212 µ m / pix) Z-axis resolution : 10 µ m

320 × 240 (pixel / slice)

Extraction result from continuous 120 images

Conclusion

- We proposed the extraction technique of interest region from biological full-color continuous images.
- (1) We converted the pixel color value from RGB to HSV color space.
- (2) We detected the difference between the tissues by a slight color change of hue and saturation value of an each pixel.
- (3) We enhanced the conventional Region Growing method so as to apply to biological color images.

We succeeded in proposing the new extraction method, which does not need arbitrary threshold or anatomical knowledge.

Future Work

- Complete 3-D extraction
- Establishment of evaluation method