IMPROVED 3D FEM PROGRAM FOR SIMULATING RETINAL DETACHMENT OPERATION ON AN EYEBALL

ZHI-GANG SUN AND AKITAKE MAKINOUCHI (RIKEN)

INTRODUCTION

NUMERICAL METHOD

- New Algorithm for Solid-Liquid Coupling analysis
- **Formulation for Contact Treatment Between Deformed Bodies**
- **Suture Treatment**

SIMULATION OF ENDIRCLING BUCKLING OPERATION

- Simulation Conditions
- Simulation Results

CONCLUSION

STRUCTURE OF AN EYEBALL

BUCKLING OPERATION

3D FEM PROGRAM FOR SIMULATION OF RETINAL DETACHMENT OPERATION ON EYEBALL

Available element type: 3D hexahedral mixed element with eight displacement nodes and one pressure node. Available boundary conditions: nodal displacement, nodal force and pressure. Coupling analysis for incompressible hyperelastic solid and static liquid. — New algorithm Available strain energy function for hyperelastic solid: $W = \sum c_{rs} (I_1 - 3)^r (I_2 - 3)^s$ Contact treatment between the deformed body and rigid body. **Contact treatment between the deformed bodies** Suture treatment

New Algorithm for Solid-Liquid Coupling Analysis

Contact Treatment Between Deformed Bodies

Suture Treatment

New Algorithm for Solid-Liquid Coupling Analysis

Total potential energy functional for incompressible hyperelastic solid:

$$\Phi = \int_{V0} \bar{[W(I_1, I_2) + 2\lambda(J-1)]} dV - g(u)$$

Variation of potential energy:

$$\delta \Phi = \int_{V_0} [\partial W / \partial \varepsilon_{ij} + 2\lambda (\partial J / \partial \varepsilon_{ij})] \delta \varepsilon_{ij} dV + \int_{V_0} 2(J-1)\delta \lambda dV - (\partial g / \partial u) \partial u = 0$$

Discretized equation for an element:

$$\begin{cases} \int_{V0} [\partial W / \partial \varepsilon_{ij} + 2\lambda (\partial \lambda / \partial \varepsilon_{ij})] [(\partial \phi_N / \partial X_j) u_{Nk} + \delta_{jk}] (\partial \phi_M / \partial X_i) dV = r_{Mk} \\ \int_{V0} \varphi_L 2(J-1) dV = 0 \end{cases}$$

*I*₁, *I*₂: reduced invariants of the right Cauch-Green deformation tensor

- : Lagrange multiplier
- J: determinant of the Jacobian matrix
- V_0 : volume of the deformed body in the reference configuration g(u): potential energy of the external force

- *ij* : Green-Lagrange strain
- *unk*: node displacement
- *X*: initial node coordinate
- , : interpolation functions of displacement and Lagrange multiplier
- *r*_{Mk}: equivalent nodal force

New Algorithm for Solid-Liquid Coupling Analysis

Liquid pressure at current configuration:

$$P^{L} = P_{ini}^{L} + \Delta P^{L} = P_{ini}^{L} - K \frac{V^{L} - V_{ini}^{L}}{V_{ini}^{L}} = P^{L}(u_{11}^{SLI}, u_{12}^{SLI}, u_{13}^{SLI}, \bullet \bullet \bullet, u_{k}^{SLI}, u_{k}^{SLI}, u_{k}^{SLI})$$

Nodal force equivalent to liquid pressure:

$$\boldsymbol{r}_{e}^{L} = \int_{SO} \boldsymbol{\Phi}^{T} P^{L} J \boldsymbol{F}^{-T} \boldsymbol{n}_{0} dS \qquad J = det | \boldsymbol{F}$$

Discretized equation of an element for solid-liquid coupling analysis:

$$\begin{cases} \int_{VO} [\partial W / \partial \varepsilon_{ij} + 2\lambda (\partial \lambda / \partial \varepsilon_{ij})] [(\partial \phi_N / \partial X_j) u_{Nk} + \delta_{jk}] (\partial \phi_M / \partial X_i) dV = r_{Mk}^O + r_{Mk}^L \\ \int_{VO} \varphi_L 2(J-1) dV = 0 \end{cases}$$

: 3×12 Matrix, F: deformation gradient, n_0 : inward normal, s_0 : element area, P^L : liquid pressure, P_{ini} : initial liquid pressure, V_{ini} : initial liquid volume.

New Algorithm for Solid-Liquid Coupling Analysis

Previous algorithm

New algorithm

New Algorithm for Solid-Liquid Coupling Analysis

Contact Treatment Between Deformed Bodies

Suture Treatment

Contact Treatment Between Deformed Bodies Specification and description of contact surface

Description of the master surface

Contact Treatment Between Deformed Bodies

Contact treatment formulation

Total potential energy function for contact treatment(penalty method):

$$\Phi_P = \Phi + \pi_P$$
$$\pi_P = \frac{1}{2}\alpha G^2$$

Penetration of hitting node into target segment:

$$G = (\boldsymbol{x}^h - \boldsymbol{x}^{t1}) \cdot \boldsymbol{n}$$

Variation of total potential energy:

$$\delta \Phi_p = \delta \Phi + \delta \pi_p = \delta \Phi + \delta \boldsymbol{u}_c^T \cdot (\alpha G \boldsymbol{D}) = \delta \Phi + \delta \boldsymbol{u}_c^T \cdot \boldsymbol{f}_c$$

: penalty constant
fc: contacting force vector
D: 12 × 1 matrix
u: virtual displacement vector:

$$\delta \boldsymbol{u}_{c}^{T} = (\delta \boldsymbol{u}_{x}^{h}, \delta \boldsymbol{u}_{y}^{h}, \delta \boldsymbol{u}_{z}^{h}, \delta \boldsymbol{u}_{x}^{t1}, \delta \boldsymbol{u}_{y}^{t1}, \delta \boldsymbol{u}_{z}^{t1}, \delta \boldsymbol{u}_{x}^{t2}, \delta \boldsymbol{u}_{y}^{t2}, \delta \boldsymbol{u}_{z}^{t2}, \delta \boldsymbol{u}_{x}^{t3}, \delta \boldsymbol{u}_{y}^{t3}, \delta \boldsymbol{u}_{z}^{t3})^{T}$$

Hitting node and target segment in contact state

New Algorithm for Solid-Liquid Coupling Analysis
 Contact Treatment Between Deformed Bodies
 Suture Treatment

Suture Treatment

Enforcing nodal force boundary conditions to the suture points

SIMULATION OF ENCIRCLING BUCKLING OPERATION

Finite Element Model for Analysis

- **Analysis Conditions**
- Analysis Results

Finite Element Model for Analysis

9862 elements

Analysis Conditions

Material model

Soft tissues except zinn's zonule: neo-Hooke hyperelastic material model $W = c(I_1 - 3)$ Zinn's zonule: linear elastic material model Liquid: static liquid

Matchai constants for soft ussues except zinn s zonute							
	Cornea	Sclera	Ciliary body	Choriod	Retina	Optic nerve	lens
C	0.0333	0.0833	0.01	0.0083	0.0008	0.05	10.0

Material constants for soft tissues except zinn's zonule

Zinn's zonule Young's modulus: 100*MPa* Liquid buck modulus: 2083.3*MPa*

Buckle shape

Suture width

Analysis Results

CONCLUSION

The new algorithm for the solid-liquid coupling analysis and the new functions of the contact treatment between deformed bodies and suture treatment are effective. The improved program enables practical scleral buckling operation.

The simulation of encircling buckling operation performed using this program was successful. The results of the stress and deformation, including the change in optic axis length, the indenting effect, and the reattachment state of the retina to the choriod was reasonable. This program has the ability of predicting suitable factors for a satisfactory buckling operation.

