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Abstract. We describe the simulation method for generating an ideal motion of an upper 
limb for long distance throw in baseball by an optimizing calculation. We also report the 
simulation experiment by using the method when the importance among plural objectives is 
dynamically changed in the improving process according to an order. When the consequence 
of simulation experiments is applied to an actual human, it is significant to consider not only 
the importance of objectives, but also the order of the importance when we make a practice 
for improving a motion. 
 
 
 
1. Introduction 
When a person learns a motion with plural objectives, the person will make a practice so that 
each objective is satisfied one by one according to an adequate order because it is difficult to 
satisfy all objectives at the same time. In the situation, it may happen that the satisfied 
objective is broken when the objective is changed to another. It may also happen that the 
consequent motions are different each other with depending on the order for the practice to 
accomplish an objective. It is interesting to simulate the improving process when a human 
learns a motion with plural objectives, and to investigate whether the consequent motion is 
converged to the different motion or not when the order of execution for the objective is 
changed. The purpose of the present paper is to report the simulation experiment for a motion 
of long distance throw in baseball when the importance among plural objectives is changed in 
the improving process according to an order. At first, we explain the simulation method based 
on an optimizing calculation reformed our previous works [1][2][3][4], and then we describe 
the experiment and its results. 
 
 
2. Simulation Method 
2.1.  Process Flow 
It can be considered that the proficient motion is an ideal or optimal motion, especially, in the 
field of sports. We call the ideal motion generated under the artificial environment like a 
computer "artificial proficient motion". Figure 1 shows the process flow until generating the 
optimizing motion of long distance throw in the specified velocity and the specified angle at 



throwing a ball. At first, the motion of making a long throw by an actual player is captured by 
DLT (Direct Linear Transformation) method [5]. The captured data is transformed to the time 
sequence data of joint angles. The inertia tensor of each segment of an upper limb and a ball 
are calculated by numerical integration with approximated curved surfaces. The time 
sequence data of joint angles, their inertia tensors, the specified ball velocity, and the 
specified angle at the ball release are input to the process of executing the optimization. After 
the optimizing calculation, the optimal throwing motion is combined with the original motion 
for other segments of the body except the upper limb, and then the combined motion for the 
whole human body is visualized by the browsing software that we have developed. The 
numerical data for the optimal throwing motion is also represented by a graph for analysis. 
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Figure 1  Process Flow 
 
 



2.2  Mathematical Model 
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Figure 2  Mathematical Model of Upper Limb 
 

Figure 2 illustrates our 3-dimensional mathematical model for an upper limb in the simulation, 
and which consists of 4 segments, a humerus, a forearm, a hand, and a ball. The model totally 
has twelve degrees of freedom. The motion of an upper limb is only affected from the 
trajectory of the shoulder joint, and the five degrees of freedom is assigned to the control for 
the trajectory. The remaining seven degrees of freedom is assigned to the upper limb 
according to an actual human. D-H (Denavit and Hartenberg) representation [6] is applied to 
the local coordinate system for the model, where the x-axis of it coincides with the 
longitudinal axis of the segment.  

The model is described by two systems of Lagrange equations that express the motion 
of long distance throw before/ after releasing a ball. For example, the system of Lagrange 
equations before releasing a ball can be represented by the following equations (1), (2), and 
(3):  
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In these equations, mi is the mass, Ji is the matrix of the inertia, ri is the position vector of the 
barycenter, g is the vector of the gravitational acceleration, and Ti=A0A1･･･Ai where Ai is 
the 4 times 4 matrix that transforms the expression on the i-th local coordinate system to the 
expression on the i-1-th local coordinate system and AB is the matrix that transforms the 
expression on the local coordinate system for the ball to the expression on the 11th local 
coordinate system. The system of Lagrange equations after releasing a ball can be represented 
in the same way. 

In our mathematical model, we determined the release point for throwing a ball by the 
following estimation function Er(t) represented by the equation  (4):  

 
Er(t) = 0.1 vb(t - 2Δt)(1- tan α(t - 2Δt) - tan αgiven )

　　　+ 0.2 vb(t - Δt)(1- tan α(t - Δt) - tan αgiven )
　　　　+ 0.4 vb(t)(1- tan α(t) - tan αgiven )
　　　　　+ 0.2 vb(t + Δt)(1- tan α(t + Δt) - tan αgiven )
　　　　　　 0.1 vb(t + 2Δt)(1- tan α(t + 2Δt) - tan αgiven ) (4) 

 
where vb(t) is the ball velocity at time t, Δt is the length of the interval of the discrete time, 
α(t) is the angle between the ball velocity vector and the horizontal direction, and αgiven is 
the specified angle at throwing a ball. The motion of the ball after releasing is represented by 
Newton equation including the frictional force of air in proportion to the velocity. 
 
2.3  Objective Function 
There were many studies of planning the trajectory of the motion to reach the target point for 
an upper limb in biocybernetics [7][8][9]. We defined the objective function according to the 
necessary condition with considering the previous works in biocybernetics. The following 
equation (5) is the objective function that we have determined for the motion of long distance 
throw:  



Ｅ（Θ(t)）＝Ws0∫（τ32＋τ42）dt＋Ws1∫（τ52＋τ62＋τ72）dt
　　　　　　＋Ws2∫（τ82＋τ92）dt＋Ws3∫（τ102＋τ112）dt
　　　　　　＋W0（Penalty for Joint Movability）

　　　　　　＋W1（Penalty for the Range and the Smoothness of Shoulder Trajectory）

　　　　　　＋W2（Penalty for Joint Torque）

　　　　　　＋W3∫[(dτ3／dt)2＋(dτ4／dt)2＋・・・＋(dτ11／dt)2]dt
　　　　　　＋W4∫[(d2τ3／dt2)2＋(d2τ4／dt2)2＋・・・＋(d2τ11／dt2)2]dt

　　　　　　＋W5（Penalty for Ball Velocity）

　　　　　　＋W6∫（vs2＋ve2＋vw2＋vh2）dt
　　　　　　＋W7∫[(dvs／dt)2＋(dve／dt)2＋(dvw／dt)2＋(dvh／dt)2dt
　　　　　　＋W8∫[(d2vs／dt2)2＋(d2ve／dt2)2＋(d2vw／dt2)2＋(d2vh／dt2)2]dt
　　　　　　＋W9（Penalty for Angle at Throwing） (5) 

 
where Θ(t)=(θ3(t)，θ4(t)，・・・，θ11(t)), Wsi and Wi are the weight coefficients, vs is the 
velocity at the shoulder joint, ve is the velocity at the elbow joint, vw is the velocity at the 
wrist joint, and vh is the velocity at the top of the hand.  

The proficient motion in the field of sports is often praised by the expression with the 
keywords of "wasteless" and "smooth" in general. Minimizing from the 1st term to the 4th 
term in the equation (5) corresponds to reducing wasteless in a motion. Minimizing the 8th 
and 9th term makes the motion smooth in the sense that the sudden occurrences or changes of 
muscular tensions exist as little and/or few as possible in the motion. The 5th and the 6th 
terms play a role to restrict the motion in the range of the movability for the actual human. 
The 7th term is the constraint for avoiding from the excessive load of torque. The 10th and the 
14th terms are to accomplish the specified velocity and the specified angle at releasing a ball. 
It is important for avoiding from an injury to execute the smooth acceleration before throwing 
a ball and the smooth braking after throwing for each segment. The terms from the 11th to the 
13th play a role for realizing it. 
 
2.4  Optimization 
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Figure 3  Optimizing Process 



The optimizing process for the motion of long distance throw is executed to nine degrees of 
freedom in our model by a quasi-Newton method that consists of the calculation of Hessian 
by BFGS's formula and the calculation of the search vector. Figure 3 shows the process flow 
of the optimizing calculation in detail, where E(Θk(t)) is the objective function, Θk(t) is the 
vector of joint angle functions in the k-th iteration, and Hk is Hessian in the k-th iteration. We 
developed the optimizing method with changing the weight coefficients dynamically, and we 
utilized the dynamic change of the weight coefficients for the simulation experiments. The 
weight coefficients, Wsi, are determined by the way such that calculating the value Vs0 of the 
2nd term when Ws1=1 for an initial motion, and then the ratio of Vs0 to each value of the 1st 
term, the third term, and the fourth term is "1: 1: 1". After determining Wsi, the total value V0 
from the 1st term to the 4th term is calculated. The weight coefficients Wi are determined by 
the way such that the ratio of V0 to each value from the 5th term to the 14th term is "1: 1: 1: 
a: b: c: d: e: f: g". When the optimizing process is converged, the succeeding optimizing 
process is executed after the initial motion is changed to the preceding converged throwing 
motion with renewing weight coefficients, These optimizing processes are repeated until the 
improvement for the value of the objective function does not happen. 
 
 
3. Simulation Experiments 
3.1  Method 
It is possible to control the importance of objectives in improving process for the motion of 
long distance throw by changing weight coefficients ratio of the objective function (5). We 
classify the objective in the equation (5) to the condition of the angle at release, the condition 
of the velocity at release, and the condition of the smooth, and those can be controlled by the 
values from “a” to “g”. According to the classification, we determined following 3 types of 
weight coefficients ratio. 
 

Weight Type (1) for the condition of the angle: 
a=0.1, b=0.1, c=0.1, d=0.1, e=0.05, f=0.025, and g=5.0.  

Weight Type (2) for the condition of the velocity: 
a=0.1, b=0.1, c=5.0, d=5.0, e=2.5, f=1.25, and g=0.1. 

Weight Type (3) for the condition of the smooth: 
a=5.0, b=2.5, c=0.1, d=0.1, e=0.05, f=0.025, and g=0.1.  

 
The conditions of the six kinds of orders for the optimization were illustrated in Table 1. 
 

Table 1  Order of Execution for Weight Types 

Condition A

Condition B

Condition C

Condition D

Condition E

Condition F

Execution Order 1 2 3

Weight Type (1) Weight Type (2) Weight Type (3)

Weight Type (1) Weight Type (2)Weight Type (3)

Weight Type (1)Weight Type (2) Weight Type (3)

Weight Type (1)Weight Type (2) Weight Type (3)

Weight Type (1)Weight Type (2)

Weight Type (3) Weight Type (1) Weight Type (2)

Weight Type (3)
 



3.2  Conditions 
 

Table 2 Physical Data and Ball Data 

Humerus

Forearm

Hand

Ball

Mass
Inertia Tensor

Ｈxx
Inertia Tensor Inertia Tensor Inertia Tensor Inertia Tensor

Ｈyy Ｈzz Ｈxy Ｈyz Ｈzx
Inertia Tensor

1.9347

(kg) (m  kg)2 (m  kg)2 (m  kg)2 (m  kg)2 (m  kg)2 (m  kg)2

-3
1.2413
　×10

1.8131
　×10 -5

-6.0618
　×10-6

-4.2412
　×10 -5

2.2021
　×10 -3

1.1280 -35.9546
　×10

6.4550
　×10 -7

9.3844
　×10-5

5.7933
　×10-3

8.0259
　×10 -4

0.3455 -2.3634
　×10-6

-1.1901
　×10-5

2.0820
　×10 -4

0.1418
7.4739
　×10 -5

-7
8.3040
　×10

4.6550
　×10-4

5.0491
　×10 -4

-1.5749
　×10-6

7.4739
　×10 -5

7.4739
　×10-5 0.0 0.0 0.0

1.2148
　×10-2

 
 

The simulation experiment was executed with the same initial motion that a professional 
baseball catcher threw a ball to the second base in an overhand style. The initial motion was 
constructed between the take-back phase and the follow-through phase for 0.5999 second. 
The simulation was carried out in about 0.0020 second for a time step in the inverse dynamics 
calculation. The threshold for the penalty of joint movability on an upper limb was decided 
from the medical data. The threshold for the penalty of the load of torques was determined 
that the value for a wrist joint is 10.0 Nm and the value for an elbow joint has been 50.0 Nm. 
The threshold for the ball velocity at the release point was determined 33.33 m/s, and the 
angle at the release was arranged between 40 and 45 degree. The ball release was assumed to 
occur between 0.3400 and 0.4199 second. Table 2 shows the physical data for an upper limb 
and a ball in the simulation experiment. 
 
 
4. Results and Discussion 
Figure 4 illustrates the original motion used for the initial motion with a ball trajectory. Figure 
5 shows the consequent motions with a ball trajectory and they can be classified to three types 
of throwing style. The first one was a side-hand style like a discus throw in condition A and C. 
The second one was a overhand style like a baseball throw in condition B and D. The third 
one was the middle style between the first and the second in Condition E and F. Those 
differences among them were mainly generated from the change of joint angle θ6 in Graph 
1. It can be understood that a motion converges to the different type of a motion from the 
improving process changed the order of the importance for plural objectives even if it begins 
the same initial motion. Table 3 shows the maximum velocity at each position of a joint, and 
the ball velocity and the angle at release in each consequent motion. The condition of angle at 
release was satisfied in all conditions, but the velocity at ball release was insufficient from the 
threshold value in all conditions. The reason for it can be considered that  
 



 
Figure 4  Original Motion 

 
 
 

 
Figure 5  Consequent Motions 
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Graph 1  Joint Angle of θ6 

 
 

Table 3  Maximum Velocity and Angle at Release 

Elbow

Wrist

Hand

Ball

Angle

(m/s)

(m/s)

(m/s)

(m/s)

(degree)

Condition A Condition B Condition C Condition D Condition E Condition F

(m/s)Shoulder 6.63 (0.302)

9.65 (0.370)

18.01 (0.394)

23.95 (0.402)

24.90 (0.390)

40.69

6.52 (0.298)

12.59 (0.322)

19.55 (0.394)

25.23 (0.400)

25.45 (0.382)

42.43

6.33 (0.298)

8.05 (0.366)

15.59 (0.382)

19.25 (0.382)

23.84 (0.382)

42.30

6.92 (0.304)

10.54 (0.358)

18.87 (0.378)

24.34 (0.384)

26.88 (0.374)

40.94

6.77 (0.298)

6.72 (0.370)

13.38 (0.416)

16.44 (0.400)

17.14 (0.408)

40.79

6.67 (0.298)

10.16 (0.370)

18.40 (0.390)

25.75 (0.388)

27.68 (0.386)

42.07  
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Graph 2  Total Torque and Torque Derivatives 
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Graph 3  Converging Process 

 
the ball velocity was compromised to the proper shortage value because there were some 
conditions decreasing the ball velocity in the objective function. The condition of the ball 
velocity will be satisfied if the conditions decreasing the velocity is removed or the weight 
coefficient for it is increased large value. 

Graph2 indicates the total torques, the total torque derivatives, and the total torque 
derivatives of second degree. Normalization was executed by dividing the square value of a 
ball velocity in each condition. Those values were well decreased in condition A, C, and F. It 
can be considered that the first type of throwing style tends to decrease those values. Graph 3 
shows the increase of the number of iteration in each cycle of the weight type. Complete 
convergence was accomplished in condition B and D, but in other conditions, the execution of 
the optimizing process was given up for the constraint of the calculation time. It can be seen 
that the consequent motion tends to be largely changed from the initial motion when the 
number of iteration was larger.  
 
 
5. Conclusion 
In the present paper, we described the simulation method for generating an ideal motion of an 
upper limb in long distance throw in baseball by an optimizing calculation. We also reported 
the simulation experiment by using the method when the importance among plural objectives 
is dynamically changed in the improving process according to an order. From the results of 
the experiment, it could be seen that the different order for the importance of the plural 
objectives generated the different consequent motion. If the result is applied to an actual 
human, the consequent motions from making a practice for improving will be different from 
each other with depending on the order of the importance for objectives. It is significant to 
consider not only the importance of objectives, but also the order of the importance when we 
make a practice for improving a motion. 
 
 
References 
[1] Mochizuki, Y., Amano, H., Tezuka, K., Matsumoto, T., Yamashita, S., Omura, K., 



"Computer Simulation for Upper Limb during High Speed Baseball Pitching", Theoretical 
and Applied Mechanics, Vol.46, pp.271-277, 1997. 
[2] Mochizuki, Y., Matsumoto, T., Tezuka, K., Yamashita, S., Inokuchi, S., Omura, K., 
"Computer Simulation of Generating Artificial Proficient Motion for Upper Limb during 
Baseball Pitching", Proceedings 1997 Int. Symposium on Nonlinear Theory and its 
Applications Vol.1, pp.401-404, 1997. 
[3] Mochizuki, Y., Inokuchi, S., and Omura, K., "Simulation Analysis of the Influenced 
Motion from Ball Mass nad Shape for Upper Limb during Baseball Pitching", Proceedings of 
World Multiconference on Systemics, Cybernetics and informatics and 4th International 
Conference on Information Systems Analysis and Synthesis, Vol.3, pp709-716, 1998. 
[4] Mochizuki, Y., Matsumoto, T., Inokuchi, S., and Omura, K., "Computer Simulation of the 
Effect of Ball Mass and Shape to Upper Limb in Baseball Pitching", Theoretical and Applied 
Mechanics, Vol.47, pp283-292, 1998. 
[5] Shapiro, R.: "The direct linear transformation method for three-dimensional 
cinematography", Res. Quart., 49, pp197-205, 1978. 
[6] Denavit, J. and Hartenberg, R.: "A kinematic notation for lower-pair mechanism based on 
matrices", ASME Journal of Applied Mechanics, 22, pp215-221, 1955. 
[7] Bullock, D. and Grossberg, S., “Neural synamics of planned arm movements: Emergent 
invariants and speed-accuracy properties during trajectory formation”, Psychological Review, 
95, pp49-90, 1988. 
[8] Flash, T., Hogan, N., “The coordination of arm movements: An experimentally confirmed 
mathematical model”, Journal of Neuroscience, 5, pp1688-1703, 1985. 
[9] Uno, Y., Kawato, M., and Suzuki, R.: "Formation and control of optimal trajectory in 
human multijoint arm movement - minimum torque-change model", Biological Cybernetics, 
61, pp89-101, 1989. 
 


