# 動的陽解法FEMによる 生体硬・軟組織構造の 衝突損傷解析

## 平田 忍(理化学研究所) 仲町 英治(大阪工業大学工学部)



例)脳の材料パラメータ同定方法

多くの検討の余地が残されている

骨および脳組織の損傷・破壊を予測するための数 理モデルおよび判定基準に関する研究は非常に少 なく実験検証も不十分

課題

頭蓋骨および脳に生じる損傷を予測する シミュレーション手法の開発



# 目的

## 有限要素人体材料モデル: ESIモデル頭部

## 動的陽解法有限要素法PAM-CRASH

硬組織である頭蓋骨および軟組織である脳の 応力伝播に関する解析結果を検討

損傷モデル構築の基礎となる知見を得る

#### 弱形式の仮想仕事率の原理式

$$\int_{V} : \delta \mathbf{D} dV + \int_{V} \delta \dot{\mathbf{u}}^{\mathrm{T}} (\rho \ddot{\mathbf{u}} + \nu \dot{\mathbf{u}} - \mathbf{f}) dV - \int_{S_{T}} \delta \ddot{\mathbf{u}}^{\mathrm{T}} \overline{\mathbf{T}} dS + \int_{S_{c}} \delta (\dot{\mathbf{u}}_{c}^{\mathrm{T}} \mathbf{f}_{c}) dS \ge 0 \qquad (1)$$

u :変位ベクトル , 記号 ( ):時間微分 , f:物体力 , ρü:慣性力 ,νu :減衰力, σ:コーシー応力 , n :単位法線ベクトル , D :変形速度テンソル , T :表面力

$$\int_{S_c} \delta(\dot{\mathbf{u}}_c^{\mathrm{T}} \mathbf{f}_c) dS = \int_{S_c} (\delta \dot{\mathbf{u}}_c)^{\mathrm{T}} \mathbf{f}_c dS + \int_{S_c} \dot{\mathbf{u}}_c^{\mathrm{T}} \delta \mathbf{f}_c dS$$
(2)

**u**<sub>c</sub>: 境界速度,**f**<sub>c</sub> : 接触力

運動方程式  $\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\ddot{\mathbf{u}} + \mathbf{G}^{\mathrm{T}}\boldsymbol{\lambda} + \mathbf{F} = \mathbf{P}$  (3a)  $\mathbf{G}\ddot{\mathbf{u}} \leq \mathbf{0}$  (3b)

M:集中質量,C:減衰マトリクス,P:外力ベクトル,F:内力ベクトル λ:ラグランジ未定乗数,G:接触境界条件マトリクス

### 接触判定法

相手物体表面上で決定された位置ベクトルxと接触判定された有限要素節点Iの位置 ベクトルx<sup>i</sup>を用いることで食い込み量gを求めることができる.

$$g = \mathbf{n} \cdot (\mathbf{x} - \mathbf{x}^{\mathrm{I}}) \tag{4}$$

## ペナルティ法

接触力ベクトルPは接触接平面に対して垂直方向および接線 方向の成分に分解できる.垂直方向成分P<sub>n</sub>は食い込み量gと ペナルティ数 p<sup>n</sup>によってつぎのように求められる.

$$\mathbf{P}_{n} = \mathbf{p}^{n} \cdot |\mathbf{g}| \cdot \mathbf{n}$$
<sup>(5)</sup>

$$\mathbf{u}^{t+\Delta t} = \left[ \left( \frac{1}{\Delta t^2} \mathbf{M} + \frac{1}{2\Delta t} \mathbf{C} \right) \right]^{-1} \left[ \mathbf{P} - \mathbf{F} + \mathbf{M} \frac{1}{\Delta t^2} \left( 2\mathbf{u}^t - \mathbf{u}^{t-\Delta t} \right) + \mathbf{C} \frac{1}{2\Delta t} \mathbf{u}^{t-\Delta t} \right] \quad (6)$$

 $\mathbf{u}^{t+\Delta t} = \hat{\mathbf{u}}^{t+\Delta t} + \mathbf{u}_{c}^{t+\Delta t}$  $\mathbf{u}_{c}^{t+\Delta t} = -(\Delta t)^{2} \mathbf{M}^{-1} (\mathbf{G}^{t+\Delta t})^{T} \lambda^{t}$  $\lambda^{t} = [(\Delta t)^{2} \mathbf{G}^{t+\Delta t} \mathbf{M}^{-1} (\mathbf{G}^{t+\Delta t})^{T}]^{-1} \mathbf{G}^{t+\Delta t} \{ \hat{\mathbf{u}}^{t+\Delta t} + \mathbf{X} \}$ 

$$\mathbf{M}\ddot{\mathbf{u}}^{t} + \mathbf{C}\dot{\mathbf{u}}^{t} + (\mathbf{G}^{t+\Delta t})^{T}\lambda + \mathbf{F}^{t} = \mathbf{P}^{t}$$
$$\mathbf{G}^{t+\Delta t} \{\mathbf{u}^{t+\Delta t} + \mathbf{X}\} = 0$$

 $(\hat{\mathbf{x}}^{t+\Delta t} = \hat{\mathbf{u}}^{t+\Delta t} + \mathbf{X})$ 



頭蓋骨



頭蓋骨は内板,間板層および外板から構成される三層構造と なっており脳を保護している.内板と外板は皮質骨,間板層 は造血器官としての海面骨からなっている.



#### 脳の構造



真ん中に大きな溝があり,その溝により左右に 分けられた大脳半球から成り立っている. 脳の中身を容積で言うと,脳実質が1200ml,CSF が100~150ml,血液が100~150mlとなっている.

| ltem               | Density  | Shear modulus | Tangent modulus | Bulk modulus | Yield Stress |
|--------------------|----------|---------------|-----------------|--------------|--------------|
|                    | (kg/mm3) | (GP)          | (GP)            | (GP)         | (GP)         |
| Skull              | 2.10E-06 | 2.27          | 2.5             | 3.29         | 0.042        |
| CSF                | 1.04E-06 | 5.00E-07      | 1.49E-05        | 0.219        | 10           |
| Bony sinus         | 2.10E-06 | 1.64E+00      | 2.5             | 2.42         | 0.042        |
| White matter-left  | 1.04E-06 | 2.68E-04      | 5.00E-05        | 0.349        | 2            |
| Gray matter-left   | 1.04E-06 | 1.68E-04      | 5.00E-05        | 0.219        | 2            |
| Ventricle-left     | 1.04E-06 | 5.00E-07      | 1.49E-05        | 0.219        | 10           |
| Brain-stem-left    | 1.04E-06 | 2.68E-04      | 5.00E-05        | 0.349        | 2            |
| Venous sinus       | 1.04E-06 | 5.00E-07      | 1.49E-05        | 0.219        | 10           |
| White matter-right | 1.04E-06 | 2.68E-04      | 5.00E-05        | 0.349        | 2            |
| Gray matter-right  | 1.04E-06 | 1.68E-04      | 5.00E-05        | 0.219        | 2            |
| Ventricle-right    | 1.04E-06 | 5.00E-07      | 1.49E-05        | 0.219        | 10           |
| Brain-stem-right   | 1.04E-06 | 2.68E-04      | 5.00E-05        | 0.349        | 2            |

#### Table. Material parameter of solid finite elements



Skull



CSF



Gray matter left



Ventricle-right

| ltem        | Density  | Young's modulus | Poisson's raito | Thickness |
|-------------|----------|-----------------|-----------------|-----------|
|             | (kg/mm3) | (GP)            |                 | (mm)      |
| Scalp       | 1.20E-06 | 0.0167          | 0.42            | 6         |
| Dura        | 1.13E-06 | 0.0315          | 0.45            | 1         |
| Pia         | 1.13E-06 | 0.0115          | 0.45            | 0.1       |
| Falx        | 1.13E-06 | 0.0315          | 0.45            | 1.5       |
| Tentorium   | 1.13E-06 | 0.0315          | 0.45            | 1         |
| Facial bone | 3.00E-06 | 5.54            | 0.22            | 9         |

#### Table. Material parameter of shell finite elements





Pia

#### Table. Material parameter of bar finite elements

| ltem           | Density  | Linear elastic stiffness |
|----------------|----------|--------------------------|
|                | (kg/mm3) |                          |
| Bridging veins | 1.13E-06 | 0.0019                   |





Bridging veins

| ltem               | Element type | Nodes | Elements |
|--------------------|--------------|-------|----------|
| skull              | Solid        | 5392  | 2672     |
| csf                | Solid        | 6598  | 3376     |
| bony sinus         | Solid        | 330   | 126      |
| white matter-left  | Solid        | 3343  | 1642     |
| gray matter-left   | Solid        | 4931  | 2790     |
| ventricle-left     | Solid        | 336   | 109      |
| brain-stem-left    | Solid        | 400   | 223      |
| venous sinus       | Solid        | 448   | 138      |
| white matter-right | Solid        | 3343  | 1642     |
| gray matter-right  | Solid        | 4931  | 2790     |
| ventricle-right    | Solid        | 336   | 109      |
| brain-stem-right   | Solid        | 400   | 223      |
| scalp              | Shell        | 2728  | 2702     |
| dura               | Shell        | 394   | 330      |
| pia                | Shell        | 3437  | 3376     |
| falx               | Shell        | 274   | 227      |
| tentorium          | Shell        | 223   | 184      |
| facial bone        | Shell        | 363   | 318      |
| bridging veins     | Bar          | 40    | 20       |

#### Table. Nodes and elements of each elements





Street, W. (1992)



nan -0,0581388 an 90.13 3097 57682 1,00055 new 0,0888877 an 88.13 3780 58682 0,00075





## 結言



・骨と脳においては伝播速度の絶対値が違う ことが分かった.

今後,実際に実験を行うなどしてデータを比較し, モデルの信頼性を検討していきたいと考えている.