Experimental study on bone remodeling rate equation -Effects of mechanical stimulus on osteoblastic activities *in vitro* -

Sodai HOSHIAI, Taiji ADACHI, and Yoshihiro TOMITA

Kobe University / RIKEN

24-25 May 2000, Riken

Introduction

Osteoblast - bone formation

Mechanical strain affects osteoblastic activities in vitro

Harell et al.,	1977	PGE ₂
Yeh & Rodan,	1984	PGE ₂
Hasegawa et al.,	1985	DNA, Protein
Buckley et al.,	1988	Proliferation rate, Alignment
Murray & Rushton,	1990	Collagen, AP activity
Jones et al.,	1991	Proliferation rate
Neidlinger-Wilke et al.,	1994	Proliferation rate
Ziambaras et al.,	1998	Gap junctional communication

Mechanism for bone remodeling

Purpose

Osteoblastic activities in vitro

Model parameters

Osteoblastic responses to mechanical deformation applied to a single osteoblast with micropipette (Xia and Ferrier, 1992)

Ca²⁺ wave propagation induced by mechanical deformation

Osteoblastic activities Model parameter Sensing distance : l_L

Mechanical stimulus applied to single osteoblast

MC3T3-E1 Calcium indicator : Fluo3-AM Confocal scanning laser microscope

Vertical image of micropipette and osteoblasts

Ca²⁺ propagation in osteoblasts network

Scan speed: 1.5 sec 60 sec

Ca²⁺ propagation in osteoblasts network

 $t = 0 \sec \theta$

0

t=9

$$t=3$$

t = 24

Change in fluorescence intensity with time

D : Deformed cell 1~5 : measured cells

Change in fluorescence intensity with time

Relationship between the increase in Ca²⁺ and distance

Sensing distance : 300µm

Osteoblastic activity on non-uniform strain field

Local stress non-uniformity : Γ

Relative value of ε_c , representative strain at arbitrary point, to ε_d , average strain at its neighbor point

Dept. Mech. Eng., Fac. Eng., Kobe Univ.

Shapes of the specimens used for the non-uniform strain field

Equivalent strain in the specimens

Γ distribution on specimens

Strain vs. $\overline{\Gamma}$

Proliferation rates of osteoblasts in nonuniform strain field

Proliferation rate in the strain - Γ **field**

Osteoblastic responses to mechanical stimulus applied to single osteoblast

Ca²⁺ wave propagation was observed

The sensing distance of an osteoblast was estimated to be about 300 μ m. (l_L =300 μ m)

Osteoblastic activity on non-uniform strain field

New experimental apparatus was developed

Solid Mechanics Laboratory at Kobe University

Katsuya Sato